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LETTER TO THE EDITOR

Box and ball system with a carrier and ultradiscrete
modified KdV equation

Daisuke Takahashi and Junta Matsukidaira

Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Ohtsu 520-21,
Japan

Received 14 August 1997

Abstract. A new soliton cellular automaton is proposed. It is defined by an array of an infinite
number of boxes, a finite number of balls and a carrier of balls. Moreover, it reduces to a discrete
equation obtained from the discrete modified Korteweg—de Vries equation through a limit. An
algebraic expression of soliton solutions is also proposed.

In 1990, Takahashi and Satsuma [1] proposed a soliton cellular automaton (SCA). Its state
is defined by using an infinite array of boxes and a finite number of balls. Therefore, the
SCA is now called a ‘box and ball system’(BBS). The time evolution rule is defined by the
following equation;

j-1 j-1

sz-s—l — min (L _ Tjt’ Z Tl_z . Z TiH-l) (1)
1=—00 1=—00

whereT! is a number of balls irnjth box at timer and L means every box holds balls

at most. (Though the box capacityis restricted to one in the original version of the BBS

in [1], we can extend the system to the one with boxes of capacity more than one [2, 3].)

The remarkable feature of the system is the existendg-ebliton solutions and an infinite

number of conserved quantities [4].

Recently, Tokihiroet al [5] including us, have revealed the algebraic properties of the
BBS by finding the direct relation to discrete soliton equations. The key is the following
identity;

lim elog(e® + e +---) = maxA, B, ...). )

e—~>+0

Using this identity, the discrete Lotka—Volterra (d-LV) equation [6];

t+1 t
w;t 1+ Swj_l

- , 3
1
w; 1+ Swj’.il
reduces to the ultradiscrete Lotka—\olterra (u-LV) equation;
1 1
th+ — W} =max0, W;_; — L) — max(Q, Wj’jl —-L) (4)

if we takew] = exp(W;/¢), § = exp(—L/¢) and a limite — +0. Note that if the parameter
L and initial W are all integer,Wj’ for any j andr is always integer.
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If we defineW! by

Z<M_T” ®)

i=—00

and introduce a transformation of coordinati‘ﬁ: Wjj_,, then we can derive equation (4)
from equation (1). Thus we can see solutions of the BBS can be expressed by those of
u-LV equation. Indeed)-soliton solutions of the BBS can be derived from those of u-LV
equation [5]. The discretization procedure described above is called ‘ultradiscretization’ and
several ultradiscrete equations are successfully derived from difference equations preserving
their algebraic properties [7-9].

Tsujimoto and Hirota [10] proposed a discrete version of modified Korteweg—de Vries
(d-mKdV) equation;

SR EIE V) IRV C eIy ©)
1+ avJ'.Jrl 1+ av}

whereé anda are parameter constants apdand: are integer variables. If we define a
new variabler,(¢) by v}, = r,(—6t) and take a limits — 0, equation (6) reduces to the
following modified version of Lotka—\Volterra equation;

rp=rij(l+ar;)(rjy1 —rj-1). ™

Moreover, if we defines(x, 1) by r;(t) = — % + V/—1es((j — 5 1)e, £4) and take a limit
¢ — 0, then equation (7) reduces to the following modified Korteweg—de Vries (mKdV)
equation;

1
s; + 6as?s, + @Smx =0. (8)

Maruno et al [11] showed that equation (6) can be bilinearized and Nasoliton
solution with a Casorati determinant. Thus, equation (6) is a fully discrete soliton equation
analogous to the continuous mKdV equation (8).

In this letter, we show that the d-mKdV equation (6) can reduce to an ultradiscrete
mKdV (u-mKdV) equation under appropriate transformations of variables and the limit
(2). Then, we show that the u-mKdV equation is related to an extended version of BBS
introducing a carrier of balls. Finally, we discuss a structur&vedoliton solutions of the
system.

First, we derive the u-mKdV equation from the d-mKdV equation. Introducing a variable
v} = v}/(1+avj), equation (6) is rewritten as
1+ G-y _1+0G—a)il,

~1+1 Vi+1 ~ -
Y ~r+1 =Y n ’ ©)

t
/ 1—0111]Jrl l—avj_1

Then, introducing another variablé’ by v; = exp(V//¢) and takings = exp(—L/¢) and
a = —exp(—M/e), equation (9) reduces to

14 (e L/e L g M/e ev,.’jf/s 14 (eL/e 4 @ M/eygViv/e
TETI eI _ i jog T T g
1+ e(VjH—M)/F y 1+ eVj-1i=M)/e
If L > M, we obtain a trivial equation from equation (10) under a limit> +0. Therefore,
we consider thd. < M case. Taking — +0, then

Vit 4+ maxO, Vi1 — L) — max0, V] — M)

= V! +max0, V/_; — L) — max©, V/_; — M) (11)

‘/jt+1 + P Iog
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box bal |

Figure 1. An example of a state fok = 3.

through the limit (2).

If we take M — oo, the last terms of both sides of equation (11) disappear and
equation (11) becomes u-LV equation (4). This corresponds to the relation between the
d-mKdV equation (6) and the d-LV equation (3) when we take 0. If L, M and initial V
are all integer,Vj’ for any j and: is always integer. We call equation (11) the ‘ultradiscrete
modified KdV’ (u-mKdV) equation.

Next, we define the ‘box and ball system with a carrier’ (BBSC) and show its evolution
rule is derived from the u-mKdV equation. Prepare an array of an infinite number of boxes
and a finite number of balls. Assume that all balls are the same, that is, they cannot be
distinguished from each other. All boxes are also the same and each boxZhbkits at
most. A ‘state’ is defined by putting balls into boxes appropriately. Therefore, any state
can be distinguished by the number of balls and the distribution of balls in the array of
boxes. Figure 1 shows an example of a statelfoe 3. Note that the array of boxes is
fixed in space and we can identify every box by integer site nunjibecreasing from left
to right.

We assume any state can evolve into another state from integer tomret- 1. In order
to define the evolution rule, prepare a ‘carrier’ of balls. Assume that the carrier can carry
M balls at most. From to ¢ + 1, the carrier moves from the oo site to theoo site and
passes each box from left to right. While the carrier passegtthbox, the following action
occurs. Assume that the carrier carrieq0 < m < M) balls before it passes thigh box.

Also assume that there afe(0 < ¢ < L) balls in the jth box. There are vacant spaces of

M —m balls in the carrier and those &f— ¢ balls in the box. Then, when the carrier passes
the box, the carrier puts mim, L — ¢) balls into the box and gets mifi M — m) balls

from the box. In other words, the carrier puts as many balls into the box as possible and
simultaneously obtains as many balls from the box as possible. The action of the carrier is
illustrated in figure 2.

According to the above rule, the number of balls in tith box changes front to
£ 4+ min(n, L — £) — min(¢, M — m) = min(m, L — ¢) + max0, £ + m — M). (Note the
identity —min(A, B) = max(—A, —B).) Finally, if Uj’ denotes the number of balls in the
jth box at timer, an evolution equation tU; is

it =t j j-1
Uit = min (L Ul Y U= U}“) + max(O, dYoui- Y ut— M).

(12)

Note thatUj’ — 0 (j — £o00) because the total number of balls is finite and that the carrier
carrieszj_1 Ul — Zj_l U!*1 balls just before passing thigh box. All dependent and

i=—00 i=—o00 i

independent variables of equation (12) are integer and the dependent véariaiileays
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bef ore passi ng after passing

Figure 2. Action of carrier while passing a box.

t=0: ..... 232.22. . ... ..
1 ... .. 33113. ... ..
2 0 132.32.
3 23.231
4 31133.
5 0 22.23
6 13.

Figure 3. Evolution of the state of figure 1 fot = 3 andM = 5. Each number denotes the
number of balls in a box and *." denotes an empty box.

satisfies 0K U < L. Therefore, the BBSC can be considered to be a cellular automaton.
Figure 3 shows an evolution of the state of figure 1 fo= 3 andM = 5. In this
figure, each number denotes the number of balls in a box and ‘." denotes an empty box.

Let us definesS} by

J
Si= Y Ul (13)

i=—00
Using U} = S§; — §;_; and equation (12), we can derive

ST —S) =—max©, S},; — S;"t — L) + max©, S}, — SiTt — M).  (14)
In the derivation, we use the identity max B) = A + max0, B — A). Moreover, if we

; 7f ¢t _ ¢t+l (71 iofi
introduceV; = §; ., — §;"", thenV/ satisfies

Vi +max, Vi, — L) —maxO, V/,; — M)
= V/ +maxQ, V/** — L) — max0, V/** — M). (15)
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t = 0 11111. .. .. 11. .. .. 1.
1 11111....11 1.
2 11111 1. .. 1.
3 11111, .11, .1........
4 1111..11.11. ... ..
5 111..1.1111..
B L 11.1..1111
T 1.11...1
8 L 1..11..
O 1...11

10 0 1....1
L1 0 1. ..
(a)

t = 0 L. .13332..23...13...2. ... .....
1 ... 13332..32...31..2........
2 L. 13332.131..22..2.......
3 13332.23..13..2......
4 13331.33..31.2.....
5 1333.133.22.2. ...
B 1 1332.2311313. ..
T 1331.32.3133.
8 L 133.13.2133
9 132.312.2
10 0 13.2131
L1 0 312.2
12 0 213
13 0 2.3
T4 0 2
15 0 2

Figure 4. Examples of evolution.g) L =1 andM = 3, (b) L =3 andM = 6.

If we introduce a coordinates transformatid?}f, = Vi, then Vj’ satisfies equation (11).
Therefore, we can conclude that the BBSC (equation (12)) reduces to the u-mKdV
equation (11) through transformation of variables and coordinates.

Next, we discuss the structure of basic solutions to the BBSC. Figuag¢add o) shows
examples of the evolution of a state of the BBSC. We can observe groups of neighbouring
balls separated by empty boxes at every time. Let us call each group a ‘ball group'.
Moreover, let us define the ‘size’ of a group by the number of balls included.

Figure 4@) shows the following. For < 3, there are three ball groups of size 5, 2
and 1, respectively. Far= 4 ~ 6, they interact with each other. For> 7, again three
ball groups of the same size appear and they never interact. After the interaction, a shift of
orbit occurs for each ball group. We can observe similar phenomena in figoyeld(the
figure, there are four ball groups of size 12, 5, 4 and 2, respectively. Note that we identify
a ball group only its size, not its shape. For example, the ball group ‘28=a0, ‘32’ at
t =1 and ‘131" atr = 2 in figure 4p) are an identical group. After the interaction, four
ball groups reappear and their sizes are the same as those before interaction. Fegures 4(
and (b) imply that the BBSC is a soliton system. Despite the interaction, every ball group
preserves its own size and speed. Therefore, we can consider each ball group is a soliton.

The most simple solution is a 1-soliton solution. A general expression of a 1-soliton
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t =20 144442. .. .......
1 ... .. 244441. .. ... ..
2 0L 34444, .. .. ..
3 44443. .. ..
4 o 144442
5 244441
6 1 .. 34444
T 444
8 L 14.

Figure 5. Example of a 1-soliton fol. =4 andM = 7.

solution is

Ujp=firn—fi —&ntsg (16)
with

[l =max0, kj — ot — £°

gj = max0, kj — wt — £9—n)

wheren is the size of a ball grougg? is an initial phasek = min(n, L), andw = min(n, M).
In figure 5, we show an example of a 1-soliton solution in the casé ef 4, M = 7,
n = 19, €9 = 3. Since site numbey is not specified explicitly in this figurez® has a
freedom of additional constant.

Let us define a speed of a soliton (ball group) by an average number of boxes which the
soliton passes per unit time. Then, a speed of a soliton ofrsizemin(n, M)/ min(n, L).
Therefore, the maximum speed /L. This is a remarkable feature of the BBSC
distinguishable from the BBS, because the speed of a soliton of the BBS is unbounded.

The general expression of ah-soliton solution is

Uj = fjsa=Jj — & t8 (17
with
N (N)
fjl = p.»—aO [Zu’lél Zﬂlﬂﬂau i|
i=0,1 i=1 i<i’
N (N)
gjt‘: aX[ZMz(&_n)_Zﬂtlh’an]
ni=0.1 i=1 i<i
where

g =kij— it —&°
a;p = 2min(n;, n;)
ki = min(n;, L)

w; = minn;, M).

Heren; andsl.0 are a size and an initial phase of each soliton, respectively,, ma){ X (11;)]
denotes the maximum value i 2ossible values ok (u;) obtained by replacing eagh,
by 0 or 1. 3" denotes the summation over all possible pairs chosen foelements.

Note that we derived the above expression of the solution empirically and cannot yet
prove it is truly a general expression. However, we confirmed the expression numerically

for a wide range of initial data. We obtain the solutions in figure 4 by setNng- 3,
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ni=5mny=2n3=18=0,¢&) =6, &) = 13 (figure 48)) and N = 4, n; = 12,
ny=05n3=4ng =28 =28 =12,&) = 22,£) = 22 (figure 4b)) in the above
expression.

Finally, we give concluding remarks. We proposed a new soliton system, the BBSC.
This system is an extended system to the BBS in [1] and can reduce to the u-mKdV
equation (11) newly obtained from the d-mKdV equation (6). Moreover, we proposed a
general expression of soliton solutions to the BBSC. However, this expression is derived
empirically. In [11], algebraic expression @f-soliton solution to the d-mKdV equation
is shown. Therefore, it may be possible to derive solutions to the u-mKdV equation from
those to the d-mKdV equation using the limit (2). Such a derivation is not automatic and
we have not yet succeeded. This is a problem to be solved in the future.
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